ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1006]      



Задача 88217

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Раскраски ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

В городе Васюки у всех семей были отдельные дома. В один прекрасный день каждая семья переехала в дом, который раньше занимала другая семья. В связи с этим было решено покрасить все дома в красный, синий или зелёный цвет, причём так, чтобы для каждой семьи цвет нового и старого домов не совпадал. Можно ли это сделать?

Прислать комментарий     Решение

Задача 102839

 [Запись даты]
Тема:   [ Правило произведения ]
Сложность: 2+
Классы: 7,8

В США дату принято записывать так: номер месяца, потом номер дня и год. В Европе же сначала идёт число, потом месяц и год. Сколько в году дней, дату которых нельзя прочитать однозначно, не зная, каким способом она написана?

Прислать комментарий     Решение

Задача 103802

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 2+
Классы: 7,8

Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

Прислать комментарий     Решение

Задача 30737

Тема:   [ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 6,7

Сколькими способами можно построить замкнутую ломаную, вершинами которой являются вершины правильного шестиугольника (ломаная может быть самопересекающейся)?

Прислать комментарий     Решение

Задача 78602

Темы:   [ Комбинаторика (прочее) ]
[ Принцип Дирихле ]
Сложность: 2+
Классы: 9,10

Для зашифровки телеграфных сообщений требуется разбить всевозможные десятизначные "слова" – наборы из десяти точек и тире – на две группы так, чтобы каждые два слова одной группы отличались не менее чем в трёх разрядах. Указать способ такого разбиения или доказать, что его не существует.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .