|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Задача Иосифа Флавия. n человек выстраиваются по кругу и нумеруются числами от 1 до n. Затем из них исключается каждый второй до тех пор, пока не останется только один человек. Например, если n = 10, то порядок исключения таков: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5. Для данного n будем обозначать через J(n) номер последнего оставшегося человека. Докажите, что а) J(2n) = 2J(n) - 1; б) J(2n + 1) = 2J(n) + 1; в) если n = (1bm - 1bm - 2...b1b0)2, то J(n) = (bm - 1bm - 2...b1b01)2. |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 592]
Найдите наибольшее значение выражения a + b + c + d – ab – bc – cd – da, если каждое из чисел a, b, c и d принадлежит отрезку [0, 1].
Докажите, что для положительных значений а, b и c выполняется неравенство
Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны.
По кругу записаны 100 целых чисел. Каждое из чисел больше суммы двух чисел, следующих за ним по часовой стрелке.
Сумма неотрицательных чисел x1, x2, ..., x10 равна 1. Найдите наибольшее возможное значение суммы x1x2 + x2x3 + ... + x9x10.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 592] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|