ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости даны n красных и n синих точек,
никакие три из которых не лежат на одной прямой. Докажите,
что можно провести n отрезков с разноцветными концами, не имеющих
общих точек.
В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A. Постройте треугольник ABC, зная три
точки A', B', C', симметричные точке пересечения высот
треугольника относительно сторон BC, CA, AB (оба
треугольника остроугольные).
|
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 604]
Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны.
Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.
Средняя линия, параллельная стороне AC треугольника ABC, равна половине стороны AB. Докажите, что треугольник ABC – равнобедренный.
В прямоугольном треугольнике АВС проведена высота СН из вершины прямого угла. Из вершины В большего острого угла проведён отрезок BK так, что ∠CBK = ∠CАB (см. рис.). Докажите, что СН делит BK пополам.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 604]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке