ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1311]      



Задача 35733

Темы:   [ Теория алгоритмов (прочее) ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Сломанный калькулятор выполняет только одну операцию "звездочка":  ab = 1 – a : b.
Докажите, что с помощью этого калькулятора все же возможно выполнить любое из четырёх арифметических действий.

Прислать комментарий     Решение

Задача 86556

Темы:   [ Теория игр (прочее) ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Игра с тремя кучками камней. Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.
Прислать комментарий     Решение


Задача 97956

Темы:   [ Симметричная стратегия ]
[ Правильные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3-
Классы: 7,8,9

Автор: Иванов В.

  а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
  б) Тот же вопрос для 12-угольника.

Прислать комментарий     Решение

Задача 102997

Темы:   [ Теория алгоритмов ]
[ Двоичная система счисления ]
Сложность: 3-
Классы: 5,6,7

Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?
Прислать комментарий     Решение


Задача 103791

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7

Автор: Пронина Е.

Заменить разные буквы разными цифрами, одинаковые — одинаковыми, а звёздочки — любыми так, чтобы получился правильный пример.

Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .