ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Имеется 30 человек, некоторые из них знакомы. Доказать, что число человек, имеющих нечётное число знакомых, чётно.

Вниз   Решение


Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?

ВверхВниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


В воздушном пространстве находятся облака. Оказалось, что пространство можно разбить десятью плоскостями на части так, чтобы в каждой из частей находилось не более одного облака. Через какое наибольшее число облаков мог пролететь самолет, придерживаясь прямолинейного курса?

ВверхВниз   Решение


Докажите, что числа Фибоначчи {Fn} удовлетворяют соотношению

arcctg F2n - arcctg F2n + 2 = arcctg F2n + 1. (8.2)

Получите отсюда равенство

arcctg 2 + arcctg 5 + arcctg 13 +...+ arcctg F2n + 1 +...= $\displaystyle {\dfrac{\pi}{4}}$.


ВверхВниз   Решение


Автор: Фольклор

На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?

ВверхВниз   Решение


Квадрат ABCD вращается вокруг своего неподвижного центра. Найдите геометрическое место середин отрезков PQ, где P — основание перпендикуляра, опущенного из точки D на неподвижную прямую l, а Q — середина стороны AB.

ВверхВниз   Решение


Докажите равенство:

4arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{1}{239}}$ = $\displaystyle {\frac{\pi}{4}}$.


Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 761]      



Задача 35662

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8

Какие веса могут иметь три гири для того, чтобы с их помощью можно было взвесить любое целое число килограммов от 1 до 10 на чашечных весах (гири можно ставить на обе чашки)? Приведите пример.

Прислать комментарий     Решение

Задача 35703

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8

У Вани работает 10 сотрудников. Каждый месяц Ваня повышает зарплату на 1 рубль ровно девятерым (по своему выбору).
Как Ване повышать зарплаты, чтобы сделать их одинаковыми? (Зарплата – целое число рублей.)

Прислать комментарий     Решение

Задача 87963

Темы:   [ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
Сложность: 2+
Классы: 5,6,7,8

Крестьянину надо перевезти через речку волка, козу и капусту. Лодка вмещает одного человека, а с ним либо волка, либо козу, либо капусту. Если без присмотра оставить козу и волка, волк съест козу. Если без присмотра оставить капусту и козу, коза съест капусту. Как крестьянину перевезти свой груз через речку?
Прислать комментарий     Решение


Задача 87982

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 5,6,7

Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка – в 5 и 8 л. Попробуйте, пользуясь этими бочонками:
  а) разделить квас на две части – 3 и 9 л;
  б) разделить квас на две равные части.

Прислать комментарий     Решение

Задача 88012

Тема:   [ Взвешивания ]
Сложность: 2+
Классы: 5,6,7,8

Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету? Решите ту же задачу в случаях, когда имеется 4 монеты и 9 монет.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 761]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .