Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 1007]
Автобусная сеть города устроена следующим образом:
1) с каждой остановки на любую другую остановку можно попасть без пересадки;
2) для каждой пары маршрутов найдётся, и притом единственная, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
3) на каждом маршруте ровно три остановки.
Сколько автобусных маршрутов в городе? (Известно, что их больше одного.)
|
|
Сложность: 3+ Классы: 10,11
|
В числовом треугольнике
каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю).
Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.
Найти корни уравнения
|
|
Сложность: 3+ Классы: 6,7,8
|
На кошачьей выставке в ряд сидят 10 котов и 19 кошек, причём рядом с каждой кошкой сидит более толстый кот.
Докажите, что рядом с каждым котом сидит кошка, которая тоньше него.
|
|
Сложность: 3+ Классы: 7,8,9
|
На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте
часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее
число концертов каждый из шести музыкантов сможет послушать (из зала) всех
остальных?
Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 1007]