Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 488]
|
|
Сложность: 4- Классы: 9,10,11
|
Клетки шахматной доски занумерованы числами от 1 до 64 так, что соседние номера стоят в соседних (по стороне) клетках.
Какова наименьшая возможная сумма номеров на диагонали?
|
|
Сложность: 4- Классы: 9,10,11
|
Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну.
Как можно сделать это за два взвешивания на чашечных весах без гирь, если про любые два куска на глаз видно, какой весит больше?
|
|
Сложность: 4- Классы: 7,8,9
|
У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в
этом классе. Сколько друзей у Пети?
|
|
Сложность: 4- Классы: 8,9,10
|
В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?
|
|
Сложность: 4- Классы: 8,9,10,11
|
На прямой расположены
2
k-1
белый и
2
k-1
черный отрезок.
Известно, что любой белый отрезок пересекается хотя бы с
k черными, а
любой черный – хотя бы с
k белыми. Докажите, что найдутся черный
отрезок, пересекающийся со всеми белыми, и белый отрезок, пересекающийся со
всеми черными.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 488]