ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза. Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64. Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/
Окружности с центрами O1 и O2 имеют общую хорду AB ,
Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.
На стороне BC треугольника ABC взята точка D такая, что
|
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 213]
Угол при основании равнобедренного треугольника равен
В треугольник ABC вписана окружность, которая касается стороны AB в точке D, а стороны AC — в точке E. Найдите площадь треугольника ADE, если известно, что AD = 6, EC = 2, а угол BCA равен 60o.
Через центр O вписанной окружности ω треугольника ABC проведена прямая, параллельная стороне BC и пересекающая стороны AB и AC соответственно в точках M и N.
На стороне BC треугольника ABC взята точка D такая, что
На стороне BC треугольника ABC взята точка D такая, что
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 213]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке