ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 213]
В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.
Докажите, что площадь треугольника можно выразить по формуле S = (p - a) ra , где ra — радиус вневписанной окружности, касающейся стороны, равной a , p — полупериметр треугольника.
В треугольнике KLM точка B — центр вписанной окружности, а
точка C — центр окружности, описанной около треугольника KLM.
Прямая BC перпендикулярна биссектрисе MB треугольника KLM.
Известно, что угол BMC равен
В угол с вершиной A , равный 60o , вписана окружность с центром O . К этой окружности проведена касательная, пересекающая стороны угла в точках B и C . Отрезок BC пересекается с отрезком AO в точке M . Найдите радиус окружности, вписанной в треугольник ABC , если AM:MO = 2:3 и BC = 7 .
Докажите, что
rarb + rbrc + rcra = p2.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 213]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке