|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 213]
На основании AB равнобедренного треугольника ABC выбрана точка D так, что окружность, вписанная в треугольник BCD, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону.
Около остроугольного треугольника ABC описана окружность с центром O. Перпендикуляры, опущенные из точки O на стороны треугольника, продолжены до пересечения с окружностью в точках K, M и P. Докажите, что
а)
В треугольнике ABC проведена биссектриса AK. Известно, что центры окружностей, вписанной в треугольник ABK и описанной около треугольника ABC, совпадают. Найдите углы треугольника ABC.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 213] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|