ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямая, проходящая через вершину основания равнобедренного треугольника, делит его площадь пополам, а периметр треугольника делит на части длиной 4 и 6. Найдите площадь треугольника и укажите, где лежит центр описанной окружности: внутри или вне треугольника. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 449]
Длины сторон параллелограмма равны a и b, длины
диагоналей — m и n. Докажите, что
a4 + b4 = m2n2 тогда и
только тогда, когда острый угол параллелограмма равен
45o.
Докажите, что медианы AA1 и BB1
треугольника ABC перпендикулярны тогда и только тогда,
когда
a2 + b2 = 5c2.
Прямая, проходящая через вершину основания равнобедренного треугольника, делит его площадь пополам, а периметр треугольника делит на части длиной 4 и 6. Найдите площадь треугольника и укажите, где лежит центр описанной окружности: внутри или вне треугольника.
Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o . Найдите периметр трапеции.
Стороны треугольника a,b и c .
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке