ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что расстояние от центра описанной окружности до стороны AB треугольника ABC равняется половине радиуса этой окружности. Найдите высоту треугольника ABC, опущенную на сторону AB, если она меньше $ \sqrt{\frac{3}{2}}$, а две другие стороны треугольника равны 2 и 3.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 448]      



Задача 102303

Темы:   [ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Окружность пересекает стороны угла FEG в точках F, N, M и G, точка N находится между E и F, точка M — между E и G. Величины углов FNM и MFG равны $ {\frac{3\pi}{4}}$ и $ {\frac{\pi}{3}}$ соответственно, FN = $ \sqrt{2}$MN. Чему равна величина угла FEG?
Прислать комментарий     Решение


Задача 102304

Темы:   [ Теорема косинусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Прямоугольный треугольник ABC вписан в окружность. Из вершины C прямого угла проведена хорда CM, пересекающая гипотенузу в точке K. Найдите площадь треугольника ABM, если AK : AB = 1 : 4, BC = $ \sqrt{2}$, AC = 2.
Прислать комментарий     Решение


Задача 102305

Темы:   [ Теорема косинусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Прямоугольный треугольник ABC вписан в окружность. Из вершины C прямого угла проведена хорда CM, пересекающая гипотенузу в точке K. Найдите площадь треугольника ABM, если BK : AB = 3 : 4, BC = 2$ \sqrt{2}$, AC = 4.
Прислать комментарий     Решение


Задача 102411

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Длины противоположных сторон AB и CD соответственно равны 9 и 4, AC = 7, BD = 8. Найдите площадь четырёхугольника ABCD.

Прислать комментарий     Решение


Задача 102507

Темы:   [ Теорема косинусов ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Известно, что расстояние от центра описанной окружности до стороны AB треугольника ABC равняется половине радиуса этой окружности. Найдите высоту треугольника ABC, опущенную на сторону AB, если она меньше $ \sqrt{\frac{3}{2}}$, а две другие стороны треугольника равны 2 и 3.

Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .