Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?

Вниз   Решение


Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают?

ВверхВниз   Решение


Группа из восьми теннисистов раз в год разыгрывала кубок по олимпийской системе (игроки по жребию делятся на 4 пары; выигравшие делятся по жребию на две пары, играющие в полуфинале; их победители играют финальную партию). Через несколько лет оказалось, что каждый с каждым сыграл ровно один раз. Докажите, что
а) каждый побывал в полуфинале более одного раза;
б) каждый побывал в финале.

ВверхВниз   Решение


На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?

ВверхВниз   Решение


Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.

ВверхВниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


Из целых чисел от 0 до 1000 выбрали 101 число.
Докажите, что среди модулей их попарных разностей есть десять различных чисел, не превосходящих 100.

ВверхВниз   Решение


Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



Задача 78134

Темы:   [ Симметрия и инволютивные преобразования ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10

Дана следующая треугольная таблица чисел:

Каждое число (кроме чисел верхней строчки) равно сумме двух ближайших чисел предыдущей строчки.
Доказать, что число, стоящее в самой нижней строчке, делится на 1958.

Прислать комментарий     Решение

Задача 103760

Темы:   [ Последовательности (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Ребусы ]
Сложность: 2+
Классы: 6

Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

Прислать комментарий     Решение


Задача 76521

Темы:   [ Свойства коэффициентов многочлена ]
[ Симметрия и инволютивные преобразования ]
[ Формулы сокращенного умножения (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Доказать, что в произведении  (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100)  после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени.

Прислать комментарий     Решение

Задача 97861

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Найти все решения системы уравнений:   (x + y)³ = z,  (y + z)³ = x,  (z + x)³ = y.

Прислать комментарий     Решение

Задача 30600

Темы:   [ Делимость чисел. Общие свойства ]
[ Симметрия и инволютивные преобразования ]
Сложность: 3+
Классы: 7,8,9

Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .