ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 499]      



Задача 102840

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.

Прислать комментарий     Решение

Задача 102843

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 6,7

Существуют ли такие двузначные числа  abcd,  что  ab·cd = abcd.

Прислать комментарий     Решение

Задача 103794

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

Прислать комментарий     Решение

Задача 111234

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Ребусы ]
Сложность: 2+
Классы: 6,7,8

Назовем число зеркальным, если справа налево оно читается так же, как слева направо. Например, число 78887 – зеркальное. Найдите все зеркальные пятизначные числа, в записи которых используются только цифры 1 и 0 .
Прислать комментарий     Решение


Задача 116779

Тема:   [ Десятичная система счисления ]
Сложность: 2+
Классы: 5,6

В каком году установлен памятник Юрию Долгорукому, если в записи этого числа последняя цифра на единицу меньше предыдущей и при зачеркивании первой и последней цифры получается наибольшее двузначное число с суммой цифр 14?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .