ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 103807

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7

Два пирата играли на золотые монеты. Сначала первый проиграл половину своих монет (отдал второму), потом второй проиграл половину своих, потом снова первый проиграл половину своих. В результате у первого оказалось 15 монет, а у второго — 33. Сколько монет было у первого пирата до начала игры?

Прислать комментарий     Решение


Задача 31355

Темы:   [ Обратный ход ]
[ Связность и разложение на связные компоненты ]
[ Ориентированные графы ]
Сложность: 3
Классы: 5,6,7,8

В 15-этажном доме имеется лифт с двумя кнопками: "+7" и "–9" (см. задачу 31354). Можно ли проехать с 3-го этажа на 12-й?

Прислать комментарий     Решение

Задача 78654

Тема:   [ Обратный ход ]
Сложность: 3
Классы: 9,10

В шахматном турнире участвовало 12 человек. После окончания турнира каждый участник составил 12 списков. В первый список входит только он сам, во второй -- он и те, у кого он выиграл, в третий — все люди из второго списка и те, у кого они выиграли, и т.д. В 12 список входят все люди из одиннадцатого списка и те, у кого они выиграли. Известно, что для любого участника турнира в его двенадцатый список попал человек, которого не было в его одиннадцатом списке. Сколько ничейных партий было сыграно в турнире?
Прислать комментарий     Решение


Задача 111638

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 6,7,8,9

Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?

Прислать комментарий     Решение

Задача 78194

Темы:   [ Обратный ход ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 9,10

Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .