Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Один треугольник лежит внутри другого.
Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.

Вниз   Решение


H – ортоцентр остроугольного треугольника ABC, D – середина стороны AC. Прямая, проходящая через точку H перпендикулярно отрезку DH, пересекает стороны AB и BC в точках E и F. Докажите, что  HE = HF.

ВверхВниз   Решение


Коэффициент полезного действия некоторого двигателя определяется формулой = 100 %. При каких значениях температуры нагревателя T1 КПД этого двигателя будет больше 70 %, если температура холодильника T2 = 300 ?

ВверхВниз   Решение


В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур даётся выражением T(t) = T0+at+bt2 , где T0 = 1200 К, a = 48 К/мин, b = -0,4 К/(мин). Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Имеются одна красная и k  (k > 1)  синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек?

ВверхВниз   Решение


В некоторых клетках доски 2n×2n стоят чёрные и белые фишки. С доски сначала снимаются все чёрные фишки, которые стоят в одной вертикали с какой-то белой, а затем все белые фишки, стоящие в одной горизонтали с какой-нибудь из оставшихся чёрных. Докажите, что либо чёрных, либо белых фишек на доске осталось не более n².

ВверхВниз   Решение


Коэффициент полезного действия некоторого двигателя определяется формулой = · 100 %. При каком наименьшем значении температуры нагревателя T1 КПД этого двигателя будет не менее 80%, если температура холодильника T2 = 400 ?

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур даётся выражением T(t) = T0+at+bt2 , где T0 = 540 К, a = 56 К/мин, b = -0,4 К/ мин2 . Известно, что при температурах нагревателя свыше 1500 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Автор: Храмцов Д.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

ВверхВниз   Решение


Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 58]      



Задача 98332

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Карточка матлото представляет собой таблицу 10×10 клеточек. Играющий отмечает 10 клеточек и отправляет карточку в конверте. После этого в газете публикуется десятка проигрышных клеточек. Докажите, что
  а) можно заполнить 13 карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
  б) двенадцати карточек для этого недостаточно.

Прислать комментарий     Решение

Задача 110099

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
Сложность: 4+
Классы: 8,9,10

Автор: Храмцов Д.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

Прислать комментарий     Решение

Задача 109728

Темы:   [ Таблицы и турниры (прочее) ]
[ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 5-
Классы: 7,8,9

В некоторых клетках доски 2n×2n стоят чёрные и белые фишки. С доски сначала снимаются все чёрные фишки, которые стоят в одной вертикали с какой-то белой, а затем все белые фишки, стоящие в одной горизонтали с какой-нибудь из оставшихся чёрных. Докажите, что либо чёрных, либо белых фишек на доске осталось не более n².

Прислать комментарий     Решение

Задача 103815

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Таблицы и турниры (прочее) ]
Сложность: 2
Классы: 6

Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Прислать комментарий     Решение


Задача 115386

Темы:   [ Теория алгоритмов ]
[ Таблицы и турниры (прочее) ]
Сложность: 2+
Классы: 6,7,8

В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .