ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2002.
Какие числа остались на доске?

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 2440]      



Задача 98346

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 7,8,9,10

a и b – натуральные числа. Известно, что  a² + b²  делится на ab. Докажите, что  a = b.

Прислать комментарий     Решение

Задача 98358

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3-
Классы: 7,8,9

Докажите, что уравнение  x² + y² – z² = 1997  имеет бесконечно много решений в целых числах.

Прислать комментарий     Решение

Задача 98656

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 6,7

У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.

Прислать комментарий     Решение

Задача 103798

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Инварианты ]
Сложность: 3-
Классы: 7,8,9

Из натурального числа вычли сумму его цифр, из полученного числа снова вычли сумму его (полученного числа) цифр и т.д. После одиннадцати таких вычитаний получился нуль. С какого числа начинали?

Прислать комментарий     Решение

Задача 103871

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3-
Классы: 6,7

На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2002.
Какие числа остались на доске?

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .