ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1027]      



Задача 103774

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2-
Классы: 5

Автор: Ботин Д.А.

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

Прислать комментарий     Решение


Задача 35707

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
  а) по 2 монеты;
  б) по 3 монеты;
  в) по 4 монеты;
  г) по 5 монет;
  д) по 6 монет;
  е) по 7 монет?
(Разрешается класть монеты одну на другую.)

Прислать комментарий     Решение

Задача 78010

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 2
Классы: 8,9

Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?
Прислать комментарий     Решение


Задача 103872

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

Прислать комментарий     Решение


Задача 116011

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 7,8,9,10

Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .