ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Количество перестановок множества из n элементов обозначается Pn. Докажите равенство  Pn = n!.

Вниз   Решение


Автор: Храбров А.

Докажите неравенство   sinn2x + (sinnx – cosnx)² ≤ 1.

ВверхВниз   Решение


Даны два пересекающихся луча и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна.

ВверхВниз   Решение


Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

ВверхВниз   Решение


Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.

ВверхВниз   Решение


Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

ВверхВниз   Решение


Известно, что  .  Какие значения может принимать выражение  ?

ВверхВниз   Решение


Найдите расстояние между точкой  A(1, 7)  и точкой пересечения прямых  x – y – 1 = 0  и  x + 3y – 12 = 0.

ВверхВниз   Решение


В киоске около школы продается мороженое двух видов: «Спортивное» и «Мальвина». На перемене 24 ученика успели купить мороженое. При этом 15 из них купили «Спортивное», а 17 – мороженое «Мальвина». Сколько человек купили мороженое обоих сортов?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 88234

Тема:   [ Объединение, пересечение и разность множеств ]
Сложность: 2-
Классы: 5,6,7

В первом пенале лежат лиловая ручка, зелёный карандаш и красный ластик; во втором – синяя ручка, зелёный карандаш и жёлтый ластик; в третьем – лиловая ручка, оранжевый карандаш и жёлтый ластик. Содержимое этих пеналов характеризуется такой закономерностью: в каждых двух из них ровно одна пара предметов совпадает и по цвету, и по назначению. Что должно лежать в четвёртом пенале, чтобы эта закономерность сохранилась? (В каждом пенале лежит ровно три предмета: ручка, карандвш и ластик.)

Прислать комментарий     Решение

Задача 103971

Темы:   [ Объединение, пересечение и разность множеств ]
[ Формула включения-исключения ]
Сложность: 2-
Классы: 5,6,7

В киоске около школы продается мороженое двух видов: «Спортивное» и «Мальвина». На перемене 24 ученика успели купить мороженое. При этом 15 из них купили «Спортивное», а 17 – мороженое «Мальвина». Сколько человек купили мороженое обоих сортов?
Прислать комментарий     Решение


Задача 103738

Тема:   [ Объединение, пересечение и разность множеств ]
Сложность: 2
Классы: 6,7

Среди математиков каждый седьмой — философ, а среди философов каждый девятый — математик. Кого больше: философов или математиков?

Прислать комментарий     Решение


Задача 88075

Темы:   [ Объединение, пересечение и разность множеств ]
[ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 5,6,7

В гимназии все ученики знают хотя бы один из древних языков – греческий или латынь, некоторые – оба языка. 85% всех ребят знают греческий язык и 75% знают латынь. Какая часть учащихся знает оба языка?

Прислать комментарий     Решение

Задача 64816

Темы:   [ Объединение, пересечение и разность множеств ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

Лесник считал сосны в лесу. Он обошёл 5 кругов, изображённых на рисунке, и внутри каждого круга насчитал ровно 3 сосны.
Может ли быть, что лесник ни разу не ошибся?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .