Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

Вниз   Решение


Теорема косинусов для тетраэдра.}Квадрат площади каждой грани тетраэдра равен сумме квадратов площадей трёх остальных граней без удвоенных попарных произведений площадей этих граней на косинусы двугранных углов между ними, т.е.

S20 = S21+S22+S23- 2S1S2 cos α12- 2S1S3 cos α13- 2S2S3 cos α23.

ВверхВниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

ВверхВниз   Решение


Год проведения нынешнего математического праздника делится на его номер:  2006 : 17 = 118.
  а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
  б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 420]      



Задача 77970

Темы:   [ Делимость чисел. Общие свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 2+
Классы: 7,8,9

Докажите, что при любом натуральном n число  n² + 8n + 15  не делится на  n + 4.

Прислать комментарий     Решение

Задача 104017

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

После урока Олег поспорил с Сашей, уверяя, что он знает такое натуральное число m, что число  m/3 + m²/2 + m³/6  нецелое. Прав ли Олег? И если прав, то что это за число?

Прислать комментарий     Решение

Задача 104066

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 6,7,8

Год проведения нынешнего математического праздника делится на его номер:  2006 : 17 = 118.
  а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
  б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.

Прислать комментарий     Решение

Задача 104877

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметика. Устный счет и т.п. ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8,9

109 яблок разложены по пакетам. В некоторых пакетах лежит по x яблок, в других – по три яблока.
Найдите все возможные значения x, если всего пакетов – 20.

Прислать комментарий     Решение

Задача 107735

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Найдите наибольшее четырёхзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .