ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли поставить на плоскости 100 точек (сначала первую, потом вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек, имела ось симметрии?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 105097

Темы:   [ Системы точек ]
[ Свойства симметрий и осей симметрии ]
[ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
Сложность: 2+
Классы: 6,7,8

Можно ли поставить на плоскости 100 точек (сначала первую, потом вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек, имела ось симметрии?
Прислать комментарий     Решение


Задача 103733

Темы:   [ Системы точек ]
[ Правильный (равносторонний) треугольник ]
[ Перенос помогает решить задачу ]
Сложность: 3-
Классы: 5,6,7,8

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Прислать комментарий     Решение


Задача 35480

Темы:   [ Системы точек ]
[ Проекция на прямую (прочее) ]
Сложность: 3-
Классы: 8,9

На плоскости дано 300 точек, никакие 3 которых не лежат на одной прямой. Докажите, что существует 100 попарно не пересекающихся треугольников с вершинами в этих точках.
Прислать комментарий     Решение


Задача 34992

Темы:   [ Системы точек ]
[ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 8,9,10

Внутри квадрата отмечено 100 точек. Квадрат разбит на треугольники таким образом, что вершинами треугольников являются только отмеченные 100 точек и вершины квадрата, причём для каждого треугольника разбиения каждая отмеченная точка либо лежит вне этого треугольника, либо является его вершиной (разбиения такого типа называются триангуляциями). Найдите число треугольников разбиения.

Прислать комментарий     Решение

Задача 35132

Темы:   [ Системы точек ]
[ Соображения непрерывности ]
Сложность: 3
Классы: 8,9

На плоскости отмечено 2000 точек. Можно ли провести прямую, по каждую сторону от которой лежит 1000 точек?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .