ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки.

Вниз   Решение


Автор: Фомин С.В.

Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?

ВверхВниз   Решение


Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?

ВверхВниз   Решение


Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции.
Найдите отрезок этой прямой, заключённый внутри трапеции, если основания равны a и b.

ВверхВниз   Решение


У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 87112

Темы:   [ Неравенства с трехгранными углами ]
[ Полярный трехгранный угол ]
Сложность: 4
Классы: 10,11

Докажите, что сумма внутренних двугранных углов трёхгранного угла больше 180o и меньше 540o .
Прислать комментарий     Решение


Задача 108848

Темы:   [ Теоремы синусов и косинусов для трехгранных углов ]
[ Полярный трехгранный угол ]
Сложность: 4
Классы: 8,9

Пусть α , β , γ – плоские углы трёхгранного угла SABC с вершиной S , противолежащие рёбрам SA , SB , SC соответственно; A , B , C – двугранные углы при этих рёбрах. Докажите, что

cos α = , cos β = , cos γ = .

Прислать комментарий     Решение

Задача 108849

Темы:   [ Теоремы синусов и косинусов для трехгранных углов ]
[ Полярный трехгранный угол ]
Сложность: 4
Классы: 8,9

Все двугранные углы некоторого трёхгранного угла – острые. Докажите, что все его плоские углы – также острые.
Прислать комментарий     Решение


Задача 115947

Темы:   [ Неравенства с трехгранными углами ]
[ Полярный трехгранный угол ]
Сложность: 4
Классы: 10,11

Докажите, что сумма угловых величин всех двугранных углов тетраэдра больше 360o .
Прислать комментарий     Решение


Задача 105166

Темы:   [ Двугранный угол ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Проектирование помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Полярный трехгранный угол ]
[ Неравенства с трехгранными углами ]
Сложность: 6
Классы: 10,11

У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .