|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки. Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля? Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A? Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке? Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции. У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника? |
Страница: 1 [Всего задач: 5]
У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|