Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.

Вниз   Решение


Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

ВверхВниз   Решение


Автор: Ботин Д.А.

Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?

ВверхВниз   Решение


Дана последовательность неотрицательных чисел a1 , a2 , an . Для любого k от 1 до n обозначим через mk величину

l=1,2,..,k .

Докажите, что при любом α>0 число тех k , для которых mk, меньше, чем a1+a2+...+an α.

ВверхВниз   Решение



На сторонах треугольника ABC внешним образом построены правильные треугольники ABC1 , AB1C и A1BC . Пусть P и Q — середины отрезков A1B1 и A1C1 . Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


Про углы треугольника ABC известно, что      и    .   Найдите величину угла C.

ВверхВниз   Решение


Автор: Карасев Р.

На прямой выбрано 100 множеств A1, A2, .. , A100 , каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств A1, A2, .. , A100 является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).

ВверхВниз   Решение


На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать?

ВверхВниз   Решение


Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 165]      



Задача 78710

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8

Двое играют в следующую игру. Каждый игрок по очереди вычёркивает 9 чисел (по своему выбору) из последовательности 1, 2, 3, ..., 100, 101. После одиннадцати таких вычёркиваний останутся два числа. Затем второй игрок присуждает первому столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй.
Прислать комментарий     Решение


Задача 79448

Темы:   [ Теория игр (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8

На шахматной доске 20×20 стоят 10 ладей и один король. Король не стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по очереди: сначала король, потом одна из ладей. Доказать, что при любом начальном расположении ладей и любом способе маневрирования ими король попадёт под шах.
Прислать комментарий     Решение


Задача 79301

Темы:   [ Теория игр (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 7,8,9

Коля и Витя играют в следующую игру. На столе лежит куча из 31 камня. Мальчики делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля сделать так, чтобы выиграть при любой игре Вити?
Прислать комментарий     Решение


Задача 79470

Темы:   [ Теория игр (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку. Может ли заяц выбежать из квадрата, если волки могут бегать только по сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем максимальная скорость зайца?
Прислать комментарий     Решение


Задача 105218

Темы:   [ Теория игр (прочее) ]
[ Арифметическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .