ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Среди вершин любого ли многогранника можно выбрать
четыре вершины тетраэдра, площадь проекции которого на
любую плоскость составляет от площади проекции (на ту же
плоскость) исходного многогранника: а) больше,
чем
Даны точки A(- 2;0), B(1;6), C(5;4) и D(2; - 2). Докажите, что четырехугольник ABCD — прямоугольник.
В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов. Биссектрисы внутренних углов треугольника продолжены до точек пересечения с описанной около треугольника окружностью, отличных от вершин исходного треугольника. В результате попарного соединения этих точек получился новый треугольник с углами 45o, 60o и 75o. Найдите отношение площадей исходного и нового треугольников. Рассматривается произвольный многоугольник (не обязательно выпуклый). |
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 488]
На берегу круглого острова Гдетотам расположено 20 деревень, в каждой живёт по 20 борцов. Был проведён турнир, в котором каждый борец встретился со всеми борцами из всех других деревень. Деревня А считается сильнее деревни Б, если хотя бы k поединков между борцами из этих деревень заканчивается победой борца из деревни А. Выяснилось, что каждая деревня сильнее следующей за ней по часовой стрелке. Какое наибольшее значение может иметь k? (У всех борцов разная сила, и в поединке всегда побеждает сильнейший.)
Дана таблица n×n клеток и такие натуральные числа k и m > k, что m и n – k взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа a1, ..., ak, ak+1, ..., am, am+1, ..., an. Тогда в следующей строчке записываются те же числа, но в таком порядке: am+1, ..., an, ak+1, ..., am, a1, ..., ak. В первую строчку записываются (по порядку) числа 1, 2, ..., n. Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.
На плоскости дано множество S, состоящее из чётного числа точек, никакие три из которых не лежат на одной прямой.
Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)
Рассматривается произвольный многоугольник (не обязательно выпуклый).
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 488]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке