ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z  выполнены тождества:  x*x = 0  и  x*(y*z) = (x*y) + z.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 105]      



Задача 65485

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 10,11

У натурального числа n есть такие два различных делителя а и b, что  (а – 1)(b + 2) = n – 2.
Докажите, что число 2n является квадратом натурального числа.

Прислать комментарий     Решение

Задача 98245

Темы:   [ Неравенство Коши ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство

Прислать комментарий     Решение

Задача 98418

Темы:   [ Числовые таблицы и их свойства ]
[ Тождественные преобразования ]
[ Симметрические многочлены ]
[ Линейная и полилинейная алгебра ]
Сложность: 4-
Классы: 7,8,9

В таблицу записано девять чисел:

Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:
a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её столбцов:   a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.

Прислать комментарий     Решение

Задача 107987

Темы:   [ Функции нескольких переменных ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z  выполнены тождества:  x*x = 0  и  x*(y*z) = (x*y) + z.

Прислать комментарий     Решение

Задача 109787

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10,11

Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
   рационально. Докажите, что для любого a из M число    рационально.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .