ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Медиана прямоугольного треугольника PQR  (∠R = 90°)  равна 5/4. Найдите площадь треугольника PQR, если его периметр равен 6.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 180]      



Задача 108091

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Правильный (равносторонний) треугольник ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 7,8,9

В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Докажите, что треугольник ABC – равносторонний.

Прислать комментарий     Решение

Задача 108523

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Медиана прямоугольного треугольника PQR  (∠R = 90°)  равна 5/4. Найдите площадь треугольника PQR, если его периметр равен 6.

Прислать комментарий     Решение

Задача 110826

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC из вершины прямого угла C проведена медиана CD. Найдите расстояние между центрами окружностей, вписанных в треугольники ACD и BCD, если  BC = 4,  а радиус описанной окружности треугольника ABC, равен 5/2.

Прислать комментарий     Решение

Задача 110827

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC из вершины прямого угла C проведена медиана CD. В треугольник ACD вписана окружность, а около треугольника BCD описана окружность. Найдите расстояние между центрами этих окружностей, если  BC = 3,  а радиус описанной окружности треугольника ABC равен 5/2.

Прислать комментарий     Решение

Задача 110828

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Диагонали прямоугольника ABCD пересекаются в точке O.
Найдите расстояние между центрами окружностей, вписанных в треугольники AOB и BOC, если  BC = 8,  BD = 10.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .