ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 180]      



Задача 110829

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC из вершины прямого угла C проведена медиана CD. Около треугольника ACD описана окружность, а в треугольник BCD вписана окружность. Найдите расстояние между центрами этих окружностей, если  BC = 3,  а радиус описанной окружности треугольника ABC равен 5/2.

Прислать комментарий     Решение

Задача 111456

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Диаметр, основные свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Прямоугольный треугольник с острым углом α расположен внутри окружности радиуса R так, что гипотенуза треугольника является хордой окружности, а вершина прямого угла треугольника лежит на диаметре, параллельном гипотенузе. Найдите площадь этого треугольника.

Прислать комментарий     Решение

Задача 115337

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что  AC = BD,  2∠ACF = ∠ADB,  2∠CAF = ∠CDB.
Докажите, что  AD = CE.

Прислать комментарий     Решение

Задача 102298

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол C – прямой, отношение медианы CM к биссектрисе CN равно  ,  высота  CK = 2.
Найдите площади треугольников CNK и ABC.

Прислать комментарий     Решение

Задача 53550

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC проведена биссектриса CD. Прямая, проходящая через точку D перпендикулярно DC, пересекает AC в точке E. Докажите, что  EC = 2AD.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .