Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 180]
Окружность, вписанная в прямоугольный треугольник ABC (∠B = 90°), касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. A2, C2 – точки, симметричные точке B1 относительно прямых BC, AB соответственно. Докажите, что прямые A1A2, C1C2 пересекаются на медиане треугольника ABC.
В равнобедренном треугольнике ABC с основанием AC проведены
биссектриса CD и прямая DE, перпендикулярная CD (точка E лежит на прямой BC).
Найдите площадь треугольника ABC, если CE = 3,5, CB = 3.
В неравнобедренном треугольнике ABC проведены биссектрисы AA1 и CC1, кроме того, отмечены середины K и L сторон AB и BC соответственно. На прямую CC1 опущен перпендикуляр AP, а на прямую AA1 – перпендикуляр CQ. Докажите, что прямые KP и LQ пересекаются на стороне AC.
На гипотенузе AC прямоугольного треугольника ABC выбрана точка D, для которой BC = CD. На катете BC взята точка E, для которой DE = CE.
Докажите, что AD + BE = DE.
В треугольнике ABC известны углы: ∠A = 45°, ∠B = 15°. На продолжении стороны AC за точку C взята точка M, причём CM = 2AC. Найдите ∠AMB.
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 180]