ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны треугольник ABC и такие точки D и E, что  ∠ADB =  ∠BEC = 90°.
Докажите, что длина отрезка DE не превосходит полупериметра треугольника ABC.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1659]      



Задача 108035

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Длины сторон остроугольного треугольника – последовательные целые числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.

Прислать комментарий     Решение

Задача 108635

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Неравенство треугольника ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

На плоскости даны треугольник ABC и такие точки D и E, что  ∠ADB =  ∠BEC = 90°.
Докажите, что длина отрезка DE не превосходит полупериметра треугольника ABC.

Прислать комментарий     Решение

Задача 108644

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

На стороне AC треугольника ABC выбрана точка D, причём  DC = 2AD,  O – центр вписанной окружности треугольника DBC, E – точка касания этой окружности с прямой BD. Оказалось, что  BD = BC.  Докажите, что  AE || DO.

Прислать комментарий     Решение

Задача 108937

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что  AH = 1  и  2∠MAC = ∠MCA.  Найдите сторону BC.

Прислать комментарий     Решение

Задача 108954

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Дан остроугольный равнобедренный треугольник ABC ( AB=BC ); E – точка пересечения перпендикуляра к стороне BC , восставленного в точке B , и перпендикуляра к основанию AC , восставленного в точке C ; D – точка пересечения перпендикуляра к стороне AB , восставленного в точке A , с продолжением стороны BC . На продолжении основания AC за точку C отметили точку F , для которой CF=AD . Докажите, что EF=ED .
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .