ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 1659]      



Задача 64994

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 7,8,9

Бумажный прямоугольный треугольник АВС перегнули по прямой так, что вершина С прямого угла совместилась с вершиной В и получился четырёхугольник. В каких отношениях точка пересечения диагоналей четырёхугольника делит эти диагонали?

Прислать комментарий     Решение

Задача 65144

Темы:   [ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 6,7

Бумажный равносторонний треугольник перегнули по прямой так, что одна из вершин попала на противоположную сторону (см. рисунок).
Докажите, что углы двух белых треугольников соответственно равны.

Прислать комментарий     Решение

Задача 65171

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Площадь круга, сектора и сегмента ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 9,10,11

Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
Найдите суммарную площадь частей кругов, заключённых внутри треугольника.

Прислать комментарий     Решение

Задача 65813

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.

Прислать комментарий     Решение

Задача 66127

Темы:   [ Правильный (равносторонний) треугольник ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 7,8

На стороне ВС равностороннего треугольника АВС отмечена точка D. Точка Е такова, что треугольник BDE – также равносторонний.
Докажите, что  CE = AD.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .