Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 1659]
На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём α + β + γ = 60°. Прямые BC1 и B1C
пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ.
В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.
Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок).
Докажите, что AM – биссектриса угла BAC.
|
|
Сложность: 3 Классы: 9,10,11
|
Правильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг.
Найдите сумму площадей этих кругов.
|
|
Сложность: 3 Классы: 8,9,10
|
Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что AM = AN = AB (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 1659]