ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая a , не лежащая в плоскости α , параллельна некоторой прямой этой плоскости. Докажите, что прямая a параллельна плоскости α .

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 694]      



Задача 108824

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Боковое ребро правильной шестиугольной пирамиды вдвое больше стороны основания. Найдите угол боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 108825

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Боковые грани правильной треугольной пирамиды попарно перпендикулярны. Найдите угол бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 108826

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Высота правильной треугольной пирамиды равна 6 , боковое ребро образует с плоскостью основания угол 45o . Найдите расстояние от центра основания пирамиды до боковой грани.
Прислать комментарий     Решение


Задача 108872

Темы:   [ Объем призмы ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Найдите объём наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной a , если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o .
Прислать комментарий     Решение


Задача 109046

Темы:   [ Параллельность прямых и плоскостей ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 10,11

Прямая a , не лежащая в плоскости α , параллельна некоторой прямой этой плоскости. Докажите, что прямая a параллельна плоскости α .
Прислать комментарий     Решение


Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .