Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.

Вниз   Решение


Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



Задача 87343

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник, сторона которого равна 1. Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны CA равно , а расстояние от O до AB относится к расстоянию от O до BC как 3:4 . Площадь грани SBC равна . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87435

Темы:   [ Объем тетраэдра и пирамиды ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Боковое ребро правильной треугольной пирамиды наклонено к плоскости основания под углом 45o . Найдите сторону основания, если объём пирамиды равен 18.
Прислать комментарий     Решение


Задача 109238

Темы:   [ Объем тетраэдра и пирамиды ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 10,11

Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .
Прислать комментарий     Решение


Задача 109239

Темы:   [ Объем тетраэдра и пирамиды ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 10,11

Основание пирамиды – равнобедренный треугольник с углом α при вершине. Все двугранные углы при основании пирамиды равны β . Найдите объём пирамиды, если радиус окружности, описанной около треугольника основания, равен R , а высота пирамиды проходит через точку, лежащую внутри треугольника.
Прислать комментарий     Решение


Задача 109375

Темы:   [ Объем тетраэдра и пирамиды ]
[ Прямоугольный тетраэдр ]
Сложность: 3
Классы: 10,11

Боковые рёбра треугольной пирамиды попарно перпендикулярны и равны a , b и c . Найдите объём пирамиды.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .