ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 87257

Темы:   [ Прямоугольный тетраэдр ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

В треугольной пирамиде боковые рёбра попарно перпендикулярны и равны , и . Найдите объём и площадь основания пирамиды.
Прислать комментарий     Решение


Задача 109396

Темы:   [ Прямоугольный тетраэдр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A2B2C2 , если площади треугольников DA1B1 , DA1C1 , DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.
Прислать комментарий     Решение


Задача 110490

Темы:   [ Прямоугольный тетраэдр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A1B1C1 , если площади треугольников DA2B2 , DA2C2 , DB2C2 и DA1B1 равны соответственно 60, 45, 75 и .
Прислать комментарий     Решение


Задача 87157

Темы:   [ Конус ]
[ Прямоугольный тетраэдр ]
Сложность: 3
Классы: 8,9

Найдите угол при вершине осевого сечения конуса, если известно, что на его поверхности можно провести три попарно перпендикулярные образующие.
Прислать комментарий     Решение


Задача 109375

Темы:   [ Объем тетраэдра и пирамиды ]
[ Прямоугольный тетраэдр ]
Сложность: 3
Классы: 10,11

Боковые рёбра треугольной пирамиды попарно перпендикулярны и равны a , b и c . Найдите объём пирамиды.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .