ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна a , боковое ребро равно b . Найдите радиус описанного шара.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 398]      



Задача 109284

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 10,11

Апофема правильной четырёхугольной пирамиды равна a , а противоположные боковые грани пирамиды взаимно перпендикулярны. Найдите радиусы описанной и вписанной сфер.
Прислать комментарий     Решение


Задача 109290

Темы:   [ Правильная пирамида ]
[ Куб ]
Сложность: 3
Классы: 10,11

Найдите ребро куба, одна грань которого лежит в плоскости основания правильной треугольной пирамиды, а четыре оставшиеся вершины – на её боковой поверхности, если стороны основания пирамиды равны a , а высота пирамиды равна h .
Прислать комментарий     Решение


Задача 109322

Темы:   [ Правильная пирамида ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной треугольной пирамиды равна a, боковое ребро b. Найдите радиус описанного шара.
Прислать комментарий     Решение


Задача 109323

Темы:   [ Правильная пирамида ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a , боковое ребро равно b . Найдите радиус описанного шара.
Прислать комментарий     Решение


Задача 109324

Темы:   [ Правильная пирамида ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной шестиугольной пирамиды равна a , боковое ребро равно b . Найдите радиус описанного шара.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .