ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Вниз   Решение


Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

ВверхВниз   Решение


Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.

ВверхВниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

ВверхВниз   Решение


Сторона основания правильной шестиугольной пирамиды равна , а угол боковой грани с плоскостью основания равен 60o . Найдите площадь сечения, проведённого через вершину пирамиды и меньшую диагональ основания.

ВверхВниз   Решение


Из шести палочек попарно различной длины сложены два треугольника (по три палочки в каждом). Всегда ли можно сложить из них один треугольник, стороны которого состоят из одной, двух и трех палочек соответственно?

ВверхВниз   Решение


С помощью циркуля и линейки постройте точку, из которой данный круг и данный отрезок видны под данными углами.

ВверхВниз   Решение


Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Докажите, что эта плоскость параллельна либо одной из граней, либо двум скрещивающимся ребрам пирамиды.

ВверхВниз   Решение


Пусть  f(x) = x² + px + q.  При каких p и q выполняются равенства  f(p) = f(q) = 0?

ВверхВниз   Решение


В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
  а) 15 марта ещё не все жительницы будут знать новость, а 18 марта уже все?
  б) 25 марта ещё не все жительницы будут знать новость, а 28 марта уже все?

ВверхВниз   Решение


Хорда AB разбивает окружность S на две дуги. Окружность S1 касается хорды AB в точке M и одной из дуг в точке N. Докажите, что:
а) прямая MN проходит через середину P второй дуги;
б) длина касательной PQ к окружности S1 равна PA.

ВверхВниз   Решение


Авторы: Ганин Я., Rideau F.

Дан выпуклый четырехугольник ABCD . A' , B' , C' , D' – ортоцентры треугольников BCD , CDA , DAB , ABC . Докажите, что в четырехугольниках ABCD и A'B'C'D' соответствующие диагонали делятся точками пересечения в одном и том же отношении.

ВверхВниз   Решение


Прямая l , параллельная диагонали AC1 единичного куба ABCDA1B1C1D1 , равноудалена от прямых BD , A1D1 и CB1 . Найдите расстояния от прямой l до этих прямых.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 76499

Тема:   [ Скрещивающиеся прямые и ГМТ ]
Сложность: 4+
Классы: 10,11

В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.
Прислать комментарий     Решение


Задача 78668

Темы:   [ Скрещивающиеся прямые и ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Cерединный перпендикуляр и ГМТ ]
Сложность: 5
Классы: 10,11

В пространство введены 4 попарно скрещивающиеся прямые, l1, l2, l3, l4, причём никакие три из них не параллельны одной плоскости. Провести плоскость P так, чтобы точки A1, A2, A3, A4 пересечения этих прямых с P образовывали параллелограмм. Сколько прямых заметают центры таких параллелограммов?
Прислать комментарий     Решение


Задача 76544

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Скрещивающиеся прямые и ГМТ ]
[ Цилиндр ]
Сложность: 3+
Классы: 10,11

Найти все прямые в пространстве, проходящие через данную точку M на данном расстоянии d от данной прямой AB.
Прислать комментарий     Решение


Задача 109355

Темы:   [ Куб ]
[ Скрещивающиеся прямые и ГМТ ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 4
Классы: 10,11

Прямая l , параллельная диагонали AC1 единичного куба ABCDA1B1C1D1 , равноудалена от прямых BD , A1D1 и CB1 . Найдите расстояния от прямой l до этих прямых.
Прислать комментарий     Решение


Задача 111201

Темы:   [ Ортогональное проектирование ]
[ Скрещивающиеся прямые и ГМТ ]
[ Конус ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Даны правильная четырёхугольная пирамида SABCD и конус, центр основания которого лежит на прямой SO ( SO – высота пирамиды). Точка E – середина ребра SD , точка F лежит на ребре AD , причём AF=FD . Треугольник, являющийся одним из осевых сечений конуса, расположен так, что две его вершины лежат на прямой CD , а третья – на прямой EF . Найдите объём конуса, если AB=4 , SO=3 .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .