ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.

Вниз   Решение


Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD .

ВверхВниз   Решение


Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

ВверхВниз   Решение


Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

ВверхВниз   Решение


Автор: Митькин Д.

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 97]      



Задача 67464

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Взвешивания ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

Кусок сыра массой 1 кг разрезали на $n\geqslant 4$ кусков массами меньше 600 г. Оказалось, что их нельзя разбить на две кучки так, чтобы масса каждой кучки была не меньше 400 г, но не больше 600 г (кучка может состоять из одного или нескольких кусков). Докажите, что найдутся три таких куска, что суммарная масса любых двух из них больше 600 г.
Прислать комментарий     Решение


Задача 109511

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9

Автор: Митькин Д.

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.
Прислать комментарий     Решение


Задача 65090

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Для четырёх различных целых чисел подсчитали все их попарные суммы и попарные произведения. Полученные суммы и произведения выписали на доску. Какое наименьшее количество различных чисел могло оказаться на доске?

Прислать комментарий     Решение

Задача 65631

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 5,6,7

В магазине продают коробки конфет. Среди них есть не менее пяти коробок разной цены (никакие две из них не стоят одинаково). Какие бы две коробки ни купил Вася, Петя всегда сможет также купить две коробки, потратив столько же денег. Какое наименьшее количество коробок конфет должно быть в продаже?

Прислать комментарий     Решение

Задача 78295

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10

Из чисел x1, x2, x3, x4, x5 можно образовать десять попарных сумм; обозначим их через a1, a2, ..., a10. Доказать, что зная числа a1, a2, ..., a10 (но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа x1, x2, x3, x4, x5.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .