Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Окружности $\omega_1$ и $\omega_2$ пересекаются в точках $P$ и $Q$. Пусть $O$ – точка пересечения общих внешних касательных к $\omega_1$ и $\omega_2$. Прямая, проходящая через точку $O$, пересекает $\omega_1$ и $\omega_2$ в точках $A$ и $B$ соответственно, так, что эти две точки лежат по одну сторону от $PQ$. Прямая $PA$ повторно пересекает $\omega_2$ в точке $C$, а прямая $QB$ повторно пересекает $\omega_1$ в точке $D$. Докажите, что $O$, $C$ и $D$ лежат на одной прямой.

Вниз   Решение


Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.)

ВверхВниз   Решение


Клетки доски 2001×2001 раскрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки чёрные. Для каждой пары разноцветных клеток рисуется вектор, идущий из центра чёрной клетки в центр белой. Докажите, что сумма нарисованных векторов равна 0.

ВверхВниз   Решение


Существует ли такое положительное число α, что при всех действительных x верно неравенство   |cos x| + |cos αx| > sin x + sin αx?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96]      



Задача 110169

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 7,8,9

Может ли в наборе из шести чисел  (a, b, c, a²/b, b²/c, c²/a},  где a, b, c – положительные числа, оказаться ровно три различных числа?

Прислать комментарий     Решение

Задача 116719

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Комбинаторика (прочее) ]
Сложность: 4-
Классы: 10,11

В команде сторожей у каждого есть разряд (натуральное число). Сторож N-го разряда N суток дежурит, потом N суток спит, снова N суток дежурит, N – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)

Прислать комментарий     Решение

Задача 78800

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 11

Даны два набора чисел: a1, ..., an и b1, ..., bn. Расположим числа ak в возрастающем порядке, а числа bk – в убывающем порядке. Получатся наборы
A1 ≤ ... ≤ AnB1 ≥ ... ≥ Bn.  Доказать, что  max{a1 + b1, ..., an + bn} ≥ max{A1 + B1, ..., An + Bn}.

Прислать комментарий     Решение

Задача 111873

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Системы алгебраических неравенств ]
Сложность: 4
Классы: 8,9,10

Найдите все такие тройки действительных чисел x, y, z, что  1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)²,  1 + z4 ≤ 2(x – y)².

Прислать комментарий     Решение

Задача 116693

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Индукция (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10

По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .