ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка O – основание высоты четырёхугольной пирамиды. Сфера с центром O касается всех боковых граней пирамиды. Точки A, B, C и D взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки AB, BC и CD проходят через три точки касания сферы с гранями.
Докажите, что отрезок AD проходит через четвёртую точку касания.

   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 352]      



Задача 67113

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.
Прислать комментарий     Решение


Задача 37006

Темы:   [ Тетраэдр (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о трех перпендикулярах ]
[ Вспомогательные равные треугольники ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 10,11

В тетраэдре DABC  ∠ACB = ∠ADB,  ребро СD перпендикулярно плоскости АВС. В треугольнике АВС дана высота h, проведённая к стороне АВ, и расстояние d от центра описанной окружности до этой стороны. Найдите CD.

Прислать комментарий     Решение

Задача 53643

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Углы между биссектрисами ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если  ∠BDE : ∠EDC = ∠BED : ∠DEA,  то треугольник ABC — равнобедренный.

Прислать комментарий     Решение

Задача 111708

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.

Прислать комментарий     Решение

Задача 109531

Темы:   [ Сфера, вписанная в многогранный угол ]
[ Касательные к сферам ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные равные треугольники ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

Точка O – основание высоты четырёхугольной пирамиды. Сфера с центром O касается всех боковых граней пирамиды. Точки A, B, C и D взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки AB, BC и CD проходят через три точки касания сферы с гранями.
Докажите, что отрезок AD проходит через четвёртую точку касания.

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .