ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли,
что |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 87]
Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в
записи которых каждая из этих цифр встречается ровно один раз.
a) Двое показывают карточный фокус. Первый снимает пять карт из колоды, содержащей 52 карты (предварительно перетасованной кем-то из зрителей), смотрит в них и после этого выкладывает их в ряд слева направо, причём одну из карт кладёт рубашкой вверх, а остальные – картинкой вверх. Второй участник фокуса отгадывает закрытую карту. Докажите, что они могут так договориться, что второй всегда будет угадывать карту. б) Второй фокус отличается от первого тем, что первый участник выкладывает слева направо четыре карты картинкой вверх, а одну не выкладывает. Могут ли и в этом случае участники фокуса так договориться, чтобы второй всегда угадывал невыложенную карту?
Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли,
что
В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.
Дана таблица n×n клеток и такие натуральные числа k и m > k, что m и n – k взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа a1, ..., ak, ak+1, ..., am, am+1, ..., an. Тогда в следующей строчке записываются те же числа, но в таком порядке: am+1, ..., an, ak+1, ..., am, a1, ..., ak. В первую строчку записываются (по порядку) числа 1, 2, ..., n. Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 87] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|