Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 45]
|
|
Сложность: 4+ Классы: 9,10,11
|
Многочлен P(x) = x³ + ax² + bx + c имеет три различных действительных корня, а
многочлен P(Q(x)), где Q(x) = x² + x + 2001, действительных корней не имеет. Докажите, что P(2001) > 1/64.
|
|
Сложность: 4+ Классы: 8,9,10
|
Найдите все такие пары (a, b) натуральных чисел, что при любом натуральном n число an + bn является точной (n+1)-й степенью.
|
|
Сложность: 5- Классы: 10,11
|
Для некоторого многочлена существует бесконечное множество его значений,
каждое из которых многочлен принимает по крайней мере в двух целочисленных точках.
Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.
|
|
Сложность: 5 Классы: 9,10,11
|
На окружности расположена тысяча непересекающихся дуг, и на каждой из них
написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное
значение наибольшего из написанных чисел?
|
|
Сложность: 5+ Классы: 9,10,11
|
Пусть
M={x1, .., x30
} – множество, состоящее из 30 различных положительных
чисел;
An (
1
n 30
) – сумма всевозможных произведений различных
n элементов
множества
M . Докажите, что если
A15
>A10
, то
A1>1
.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 45]