ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



Задача 109875

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Найдите все такие простые числа p, что число  p² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

Прислать комментарий     Решение

Задача 110014

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)

Прислать комментарий     Решение

Задача 110074

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Автор: Храбров А.

Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?

Прислать комментарий     Решение

Задача 115406

Темы:   [ Тригонометрические неравенства ]
[ Тригонометрический круг ]
[ Количество и сумма делителей числа ]
Сложность: 4
Классы: 10,11

Автор: Трушин Б.

Сколько раз функция   f(x) = cos x cos x/2 cos x/3 ... cos x/2009   меняет знак на отрезке  [0, 2009π/2] ?

Прислать комментарий     Решение

Задача 35071

Темы:   [ НОД и НОК. Взаимная простота ]
[ Правило произведения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .