ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми? Решение |
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 737]
В таблице n×n разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)
Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?
Сто мудрецов хотят проехать на электричке из 12 вагонов от первой до 76-й станции. Они знают, что на первой станции в два вагона электрички сядут два контролёра. После четвёртой станции на каждом перегоне один из контролёров будет переходить в соседний вагон, причём они "ходят" по очереди. Мудрец видит контролёра, только если он в соседнем вагоне или через вагон. На каждой станции каждый мудрец может перебежать по платформе не далее чем на три вагона (например, из 7-го вагона мудрец может добежать до любого вагона с номером от 4 до 10 и сесть в него). Какое максимальное число мудрецов сможет ни разу не оказаться в одном вагоне с контролёром, как бы контролёры ни перемещались? (Никакой информации о контролёрах, кроме указанной в задаче, мудрец не получает. Мудрецы договариваются о стратегии заранее.)
В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется сложным, иначе – простым. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал турист. Вася победит, если в какой-то момент Петя не сможет сделать ход. Докажите, что
Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|