ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Коганов И.

В Швамбрании N городов, каждые два соединены дорогой. При этом дороги сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над другой). Злой волшебник устанавливает на всех дорогах одностороннее движение таким образом, что если из города можно выехать, то в него нельзя вернуться. Доказать, что
  а) волшебник может это сделать;
  б) найдётся город, из которого можно добраться до всех, и найдётся город, из которого нельзя выехать;
  в) существует единственный путь, обходящий все города;
  г) волшебник может осуществить своё намерение N! способами.

Вниз   Решение


Дан куб с ребром 1. Докажите, что сумма расстояний от произвольной точки до его вершин не меньше 4 .

ВверхВниз   Решение


Автор: Фольклор

Решить в целых числах уравнение  2n + 7 = x².

ВверхВниз   Решение


Автор: Храмцов Д.

Набор чисел a0, a1, ..., an удовлетворяет условиям:  a0 = 0,  0 ≤ ak+1ak ≤ 1  при  k = 0, 1, ..., n – 1.  Докажите неравенство  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 67028

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

В коллекции Алика есть два типа предметов: значки и браслеты. Значков больше, чем браслетов. Алик заметил, что если он увеличит количество браслетов в некоторое (не обязательно целое) число раз, не изменив количества значков, то в его коллекции будет 100 предметов. А если, наоборот, он увеличит в это же число раз первоначальное количество значков, оставив прежним количество браслетов, то у него будет 101 предмет. Сколько значков и сколько браслетов могло быть в коллекции Алика?
Прислать комментарий     Решение


Задача 30882

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 4-
Классы: 9

Решите уравнение  a² + b² + c² + d² – ab – bc – cd – d + 2/5 = 0.

Прислать комментарий     Решение

Задача 110087

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Храмцов Д.

Набор чисел a0, a1, ..., an удовлетворяет условиям:  a0 = 0,  ak+1ak + 1  при  k = 0, 1, ..., n – 1.  Докажите неравенство  

Прислать комментарий     Решение

Задача 110096

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Храмцов Д.

Набор чисел a0, a1, ..., an удовлетворяет условиям:  a0 = 0,  0 ≤ ak+1ak ≤ 1  при  k = 0, 1, ..., n – 1.  Докажите неравенство  

Прислать комментарий     Решение

Задача 116451

Темы:   [ Тождественные преобразования ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Какие значения может принимать выражение  (x – y)(y – z)(z – x),  если известно, что   ?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .