Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 187]
|
|
Сложность: 3+ Классы: 7,8,9
|
Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Какое наименьшее значение может быть у частного от деления первого произведения на второе?
|
|
Сложность: 4- Классы: 7,8,9
|
Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно
выбрать два числа, не являющихся взаимно простыми.
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа, 1 < m < n < 1986, не является целым числом.
[Формула Лежандра]
|
|
Сложность: 4- Классы: 8,9,10
|
Число n! разложено в произведение простых чисел:
Докажите равенство
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что число p входит в разложение n! с показателем, не превосходящим
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 187]