ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 278]      



Задача 110141

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 7,8,9

Двое по очереди выписывают на доску натуральные числа от 1 до 1000. Первым ходом первый игрок выписывает на доску число 1. Затем очередным ходом на доску можно выписать либо число 2a , либо число a+1 , если на доске уже написано число a . При этом запрещается выписывать числа, которые уже написаны на доске. Выигрывает тот, кто выпишет на доску число 1000. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 110192

Темы:   [ Теория игр (прочее) ]
[ Геометрическая прогрессия ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?
Прислать комментарий     Решение


Задача 30450

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8

У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать хода.

Прислать комментарий     Решение


Задача 30455

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 7,8,9

Король стоит на поле a1. За один ход его можно передвинуть на одно поле вправо, или на одно поле вверх, или на одно поле по диагонали "вправо-вверх". Выигрывает тот, кто поставит короля на поле h8.

Прислать комментарий     Решение

Задача 30457

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 7,8,9

На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 278]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .