Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

  В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
  Однажды Король провел такую реформу: каждый из N мэров городов стал снова мэром одного из N городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара соседних городов, обменявшихся мэрами.

Вниз   Решение


Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр.

ВверхВниз   Решение


Автор: Рукшин С.

На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.
Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?

ВверхВниз   Решение


Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.

ВверхВниз   Решение


С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.

ВверхВниз   Решение


На рёбрах NN1 и KN куба KLMNK1L1M1N1 отмечены точки P и Q , причём = , = 4 . Через точки M1 , P и Q проведена плоскость. Найдите расстояние от точки K до этой плоскости, если ребро куба равно 3

Вверх   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 217]      



Задача 87471

Темы:   [ Куб ]
[ Свойства сечений ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – такая точка на ребре A1D1 , для которой A1M:MD1 = 1:2 . Найдите периметр треугольника AB1M , а также расстояние от вершины A1 до плоскости, проходящей через вершины этого треугольника.
Прислать комментарий     Решение


Задача 110445

Темы:   [ Куб ]
[ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Ребро куба EFGHE1F1G1H1 равно 2. На рёбрах EH и HH1 взяты точки A и B , причём =2 , = . Через точки A , B и G1 проведена плоскость. Найдите расстояние от точки E до этой плоскости.
Прислать комментарий     Решение


Задача 110446

Темы:   [ Куб ]
[ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

На рёбрах NN1 и KN куба KLMNK1L1M1N1 отмечены точки P и Q , причём = , = 4 . Через точки M1 , P и Q проведена плоскость. Найдите расстояние от точки K до этой плоскости, если ребро куба равно 3
Прислать комментарий     Решение


Задача 35153

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ ГМТ - окружность или дуга окружности ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 3
Классы: 10,11

Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка?
Прислать комментарий     Решение


Задача 66180

Темы:   [ Куб ]
[ Правильные многогранники. Двойственность и взаимосвязи ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 3+
Классы: 10,11

Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .