ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город. Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр. На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба. Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15. С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.
На рёбрах NN1 и KN куба KLMNK1L1M1N1 отмечены точки
P и Q , причём |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 217]
Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – такая точка на ребре A1D1 , для которой A1M:MD1 = 1:2 . Найдите периметр треугольника AB1M , а также расстояние от вершины A1 до плоскости, проходящей через вершины этого треугольника.
Ребро куба EFGHE1F1G1H1 равно 2. На рёбрах
EH и HH1 взяты точки A и B , причём
На рёбрах NN1 и KN куба KLMNK1L1M1N1 отмечены точки
P и Q , причём
Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка?
Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 217]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке