ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В правильной треугольной призме LMNL1M1N1 ( LL1 || MM1 || NN1 ) известно, что LL1:LM=9:2 . На боковых рёбрах LL1 , MM1 и NN1 взяты точки B , C и D соответственно, причём LB:BL1=2:7 , MC:CM1=6:3 , ND:DN1=4:5 . Найдите двугранный угол между плоскостями BCD и LMN .

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 158]      



Задача 110451

Темы:   [ Правильная призма ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

В правильной треугольной призме BCDB1C1D1 ( BB1 || CC1 || DD1 ) известно, что BB1:BC=5:3 . На боковых рёбрах BB1 , CC1 и DD1 взяты точки L , M и N соответственно, причём BL:LB1=3:2 , CM:MC1=2:3 , DN:ND1=1:4 . Найдите двугранный угол между плоскостями LMN и BCD .
Прислать комментарий     Решение


Задача 110452

Темы:   [ Правильная призма ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

В правильной треугольной призме LMNL1M1N1 ( LL1 || MM1 || NN1 ) известно, что LL1:LM=9:2 . На боковых рёбрах LL1 , MM1 и NN1 взяты точки B , C и D соответственно, причём LB:BL1=2:7 , MC:CM1=6:3 , ND:DN1=4:5 . Найдите двугранный угол между плоскостями BCD и LMN .
Прислать комментарий     Решение


Задача 111385

Темы:   [ Свойства сечений ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

В усечённой четырёхугольной пирамиде ABCDA1B1C1D1 боковое ребро AA1 перпендикулярно плоскости нижнего основания ABCD . Грани BAA1B1 , DAA1D1 , ABCD – равные трапеции, прямая AB параллельна прямой CD и BAD = 60o . Найдите двугранный угол между плоскостями, проходящими через точки A , D1 , B1 и B , D , C1 соответственно.
Прислать комментарий     Решение


Задача 111614

Темы:   [ Свойства сечений ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

Нижним основанием четырёхугольной усечённой пирамиды является ромб ABCD , у которого AB=4 и BAD=60o . AA1 , BB1 , CC1 , DD1 – боковые рёбра усечённой пирамиды, ребро A1B1=2 , ребро CC1 перпендикулярно плоскости основания и равно 2. На ребре BC взята точка M так, что BM=3 , и через точки B1 , M и центр ромба ABCD проведена плоскость. Найдите двугранный угол между этой плоскостью и плоскостью AA1C1C .
Прислать комментарий     Решение


Задача 87498

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Высота правильной треугольной пирамиды вдвое больше стороны основания. Найдите: а) угол между боковым ребром и плоскостью основания; б) угол между боковой гранью и плоскостью основания.
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .