ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY .

Вниз   Решение


Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB,  ∠AMC = 70°.  Найдите углы треугольников ABC и ADC.

ВверхВниз   Решение


Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?

ВверхВниз   Решение


В треугольнике ABC сторона AB равна 2, а углы A и B равны соответственно 60° и 70°. На стороне AC взята точка D, причём  AD = 1.
Найдите углы треугольника BDC.

ВверхВниз   Решение


В стране 15 городов, некоторые из них соединены авиалиниями, принадлежащими трём авиакомпаниям. Известно, что даже если любая из авиакомпаний прекратит полеты, можно будет добраться из каждого города в любой другой (возможно, с пересадками), пользуясь рейсами оставшихся двух компаний. Какое наименьшее количество авиалиний может быть в стране?

ВверхВниз   Решение


В сферу радиуса 1 вписан параллелепипед, объём которого равен  .  Найдите площадь полной поверхности параллелепипеда.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 75]      



Задача 111128

Темы:   [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Диагонали трёх различных граней прямоугольного параллелепипеда равны m , n и p . Найдите диагональ параллелепипеда.
Прислать комментарий     Решение


Задача 111129

Темы:   [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Диагональ прямоугольного параллелепипеда образует с его рёбрами углы α , β и γ . Докажите, что cos2α + cos2β + cos2γ = 1 .
Прислать комментарий     Решение


Задача 116527

Темы:   [ Прямоугольные параллелепипеды ]
[ Cкрещивающиеся прямые, угол между ними ]
[ Касательные к сферам ]
[ Касающиеся сферы ]
Сложность: 3
Классы: 10,11

В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AA1 < AD < AB. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R.

Прислать комментарий     Решение

Задача 110483

Темы:   [ Прямоугольные параллелепипеды ]
[ Боковая поверхность параллелепипеда ]
[ Сфера, описанная около призмы ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

В сферу радиуса    вписан параллелепипед, объём которого равен 8. Найдите площадь полной поверхности параллелепипеда.

Прислать комментарий     Решение

Задача 110484

Темы:   [ Прямоугольные параллелепипеды ]
[ Боковая поверхность параллелепипеда ]
[ Сфера, описанная около призмы ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

В сферу радиуса 1 вписан параллелепипед, объём которого равен  .  Найдите площадь полной поверхности параллелепипеда.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .