Версия для печати
Убрать все задачи
Дан равносторонний треугольник ABC. Из его внутренней точки M опущены перпендикуляры MA', MB', MC' на стороны.
Найдите геометрическое место точек M, для которых треугольник A'B'C' – прямоугольный.

Решение
В равнобедренном треугольнике
ABC (
AB=BC ) проведена
биссектриса
CD . Прямая, перпендикулярная
CD и проходящая
через центр описанной около треугольника
ABC окружности,
пересекает
BC в точке
E . Прямая, проходящая через точку
E параллельно
CD , пересекает
AB в точке
F . Докажите,
что
BE=FD .


Решение
Треугольник ABC вписан в окружность S. Пусть A0 – середина дуги BC окружности S, не содержащей точку A, C0 – середина дуги окружности S, не содержащей точку C. Окружность S1 с центром A0 касается BC, окружность S2 с центром C0 касается AB. Докажите, что центр I вписанной в треугольник ABC окружности лежит на одной из общих внешних касательных к окружностям S1 и S2.


Решение
Угол боковой грани с плоскостью основания правильной
треугольной пирамиды равен
β . Найдите угол бокового ребра с
плоскостью основания.


Решение
Иван Иванович построил сруб, квадратный в основании, и собирается покрывать его крышей. Он выбирает между двумя крышами одинаковой высоты: двускатной и
четырёхскатной (см. рисунки). На какую из этих крыш понадобится больше жести?


Решение
Докажите, что площадь ортогональной проекции плоского
многоугольника на плоскость равна площади проектируемого
многоугольника, умноженной на косинус угла между плоскостью
проекций и плоскостью проектируемого многоугольника.

Решение